miércoles, 21 de abril de 2010

Caso 12:: A que te gano!!

Teoría de Juegos..


La teoría de los juegos es una rama de la matemática con aplicaciones a la economía, sociología, biología y psicología, que analiza las interacciones entre individuos que toman decisiones en una marco de incentivos formalizados (llamados juegos). En un juego, varios agentes buscan maximizar su utilidad eligiendo determinados cursos de acción. La utilidad final obtenida por cada individuo depende de los cursos de acción escogidos por el resto de los individuos.

La teoría de juegos tiene muchas aplicaciones en las ciencias sociales. La mayoría de las situaciones estudiadas por la teoría de juegos implican conflictos de intereses, estrategias y trampas. De particular interés son las situaciones en las que se puede obtener un resultado mejor cuando los agentes cooperan entre sí, que cuando los agentes intentan maximizar sólo su utilidad.

La teoría de juegos fue ideada en primer lugar por John von Neumann. Luego, John Nash, A.W. Tucker y otros hicieron grandes contribuciones a la teoría de juegos.

Que son los juegos?

Se denomina juego a la situación interactiva especificada por el conjunto de participantes, los posibles cursos de acción que puede seguir cada participante, y el conjunto de utilidades.

La teoría clasifica los juegos en muchas categorías que determinan qué métodos particulares se pueden aplicar para resolverlos (y, de hecho, también cómo se define "resolución" en una categoría particular). Las categorías comunes incluyen:

* Juegos simétricos y asimétricos

Un juego simétrico es un juego en el que las recompensas por jugar una estrategia en particular dependen sólo de las estrategias que empleen los otros jugadores y no de quién las juegue. Si las identidades de los jugadores pueden cambiarse sin que cambien las recompensas de las estrategias, entonces el juego es simétrico. Muchos de los juegos 2×2 más estudiados son simétricos. Las representaciones estándar del juego de la gallina, el dilema del prisionero y la caza del ciervo son juegos simétricos.

Los juegos asimétricos más estudiados son los juegos donde no hay conjuntos de estrategias idénticas para ambos jugadores. Por ejemplo, el juego del ultimátum y el juego del dictador tienen diferentes estrategias para cada jugador; no obstante, puede haber juegos asimétricos con estrategias idénticas para cada jugador. Por ejemplo, el juego mostrado a la derecha es asimétrico a pesar de tener conjuntos de estrategias idénticos para ambos jugadores.

* Juegos de suma cero y de suma no cero

En los juegos de suma cero el beneficio total para todos los jugadores del juego, en cada combinación de estrategias, siempre suma cero (en otras palabras, un jugador se beneficia solamente a expensas de otros). El go, el ajedrez, el póker y el juego del oso son ejemplos de juegos de suma cero, porque se gana exactamente la cantidad que pierde el oponente. Como curiosidad, el fútbol dejó hace unos años de ser de suma cero, pues las victorias reportaban 2 puntos y el empate 1 (considérese que ambos equipos parten inicialmente con 1 punto), mientras que en la actualidad las victorias reportan 3 puntos y el empate 1.

La mayoría de los ejemplos reales en negocios y política, al igual que el dilema del prisionero, son juegos de suma no cero, porque algunos desenlaces tienen resultados netos mayores o menores que cero. Es decir, la ganancia de un jugador no necesariamente se corresponde con la pérdida de otro. Por ejemplo, un contrato de negocios involucra idealmente un desenlace de suma positiva, donde cada oponente termina en una posición mejor que la que tendría si no se hubiera dado la negociación.

Se puede analizar más fácilmente un juego de suma cero, y cualquier juego se puede transformar en un juego de suma cero añadiendo un jugador "ficticio" adicional ("el tablero" o "la banca"), cuyas pérdidas compensen las ganancias netas de los jugadores.

La matriz de pagos de un juego es una forma conveniente de representación. Por ejemplo, un juego de suma cero de dos jugadores con la matriz que se muestra a la derecha.

* Juegos cooperativos


Un juego con situacion cooperativa se caracteriza por un contrato que puede hacerse cumplir. La teoría de los juegos cooperativos da justificaciones de contratos plausibles. La plausibilidad de un contrato está muy relacionada con la estabilidad.

Dos jugadores negocian qué tanto quieren invertir en un contrato. La teoría de la negociación axiomática nos muestra cuánta inversión es conveniente para nosotros. Por ejemplo, la solución de Nash para la negociación demanda que la inversión sea justa y eficiente.

De cualquier forma, podríamos no estar interesados en la justicia y exigir más. De hecho, existe un juego no-cooperativo creado por Ariel Rubinstein consistente en alternar ofertas, que apoya la solución de Nash considerándola la mejor, mediante el llamado equilibrio de Nash.

* Simultáneos y secuenciales


Los juegos simultáneos son juegos en los que los jugadores mueven simultáneamente o en los que éstos desconocen los movimientos anteriores de otros jugadores. Los juegos secuenciales (o dinámicos) son juegos en los que los jugadores posteriores tienen algún conocimiento de las acciones previas. Este conocimiento no necesariamente tiene que ser perfecto; sólo debe consistir en algo de información. Por ejemplo, un jugador1 puede conocer que un jugador2 no realizó una acción determinada, pero no saber cuál de las otras acciones disponibles eligió.

La diferencia entre juegos simultáneos y secuenciales se recoge en las representaciones discutidas previamente. La forma normal se usa para representar juegos simultáneos, y la extensiva para representar juegos secuenciales.

* Juegos de información perfecta


Un juego de información imperfecta (las líneas punteadas representan la ignorancia de la parte del jugador 2).

Un subconjunto importante de los juegos secuenciales es el conjunto de los juegos de información perfecta. Un juego es de información perfecta si todos los jugadores conocen los movimientos que han efectuado previamente todos los otros jugadores; así que sólo los juegos secuenciales pueden ser juegos de información perfecta, pues en los juegos simultáneos no todos los jugadores (a menudo ninguno) conocen las acciones del resto. La mayoría de los juegos estudiados en la teoría de juegos son juegos de información imperfecta, aunque algunos juegos interesantes son de información perfecta, incluyendo el juego del ultimátum y el juego del ciempiés. También muchos juegos populares son de información perfecta, como el ajedrez.

La información perfecta se confunde a menudo con la información completa, que es un concepto similar. La información completa requiere que cada jugador conozca las estrategias y recompensas del resto pero no necesariamente las acciones.

En los juegos de información completa cada jugador tiene la misma "información relevante al juego" que los demás jugadores. El ajedrez y el dilema del prisionero ejemplifican juegos de información completa. Los juegos de información completa ocurren raramente en el mundo real, y los teóricos de los juegos, usualmente los ven sólo como aproximaciones al juego realmente jugado.

* Juegos de longitud infinita (Super - Juegos)

Por razones obvias, los juegos estudiados por los economistas y los juegos del mundo real finalizan generalmente tras un número finito de movimientos. Los juegos matemáticos puros no tienen estas restricciones y la teoría de conjuntos estudia juegos de infinitos movimientos, donde el ganador no se conoce hasta que todos los movimientos se conozcan. El interés en dicha situación no suele ser decidir cuál es la mejor manera de jugar a un juego, sino simplemente qué jugador tiene una estrategia ganadora (Se puede probar, usando el axioma de elección, que hay juegos —incluso de información perfecta, y donde las únicas recompensas son "perder" y "ganar"— para los que ningún jugador tiene una estrategia ganadora.) La existencia de tales estrategias tiene consecuencias importantes en la teoría descriptiva de conjuntos.

Estrategia


Cuando un jugador tiene en cuenta las reacciones de otros jugadores para realizar su elección, se dice que el jugador tiene una estrategia. Una estrategia es un plan de acciones completo que se lleva a cabo cuando se juega el juego. Se explicita antes de que comience el juego, y prescribe cada decisión que los agentes deben tomar durante el transcurso del juego, dada la información disponible para el agente. La estrategia puede incluir movimientos aleatorios.

Resultados de los juegos

El resultado de un juego es una cierta asignación de utilidades finales. Se denomina resultado de equilibrio si ningún jugador puede mejorar su utilidad unilateralmente dado que los otros jugadores se mantienen en sus estrategias. Un equilibrio estratégico es aquel que se obtiene cuando, dado que cada jugador se mantiene en su estrategia, ningún jugador puede mejorar su utilidad cambiando de estrategia. Alternativamente, un perfil de estrategias conforma un equilibrio si las estrategias conforman la mejor respuesta a las otras.

Forma normal versus forma extensiva de los juegos

En juegos de forma normal, los jugadores mueven simultáneamente. Si el conjunto de estrategias es discreto y finito, el juego puede ser representado por una matriz NxM (ver abajo). Un juego en forma extensiva especifica el orden completo de movimientos a través de la dirección del juego, generalmente en un árbol de juego.

Juegos NxM

Una forma de juegos de dos jugadores, en la cual un jugador tiene N acciones posibles y el otro tiene M acciones posibles. En un juego así, los pares de utilidades o pagos pueden ser representados en una matriz y el juego es fácilmente analizable. Los juegos NxM dan una idea de cómo puede verse la estructura de un juego mas complejo.

Matriz de resultados de un juego


La matriz de resultados de un juego representa el resultado del juego en una matriz. Supongamos que dos personas, A y B, están jugando un sencillo juego. El juego consiste en lo siguiente: la persona A tiene la posibilidad de elegir “arriba” o “abajo”, mientras que B puede elegir “izquierda” o “derecha”. Los resultados del juego se representan en la matriz de resultados:


Izquierda

Derecha

Arriba

(50 , 100)

(0 , 50)

Abajo

(100 , 50)

(50 , 0)

Estrategia dominante

Una estrategia dominante es aquella elección que realiza el jugador independientemente de lo que haga el otro. En el juego representado en la matriz de arriba, la estrategia dominante para A es elegir “abajo”, mientras que la estrategia dominante para B es elegir “izquierda”. Estas estrategias dominantes dan como resultado el equilibrio de estrategias dominantes del juego. Si cada jugador tiene una estrategia dominante se puede predecir el resultado del juego.

Equilibrio de Nash

El equilibrio de Nash fue formulado por John Nash, que es un matemático norteamericano, en 1951. Un par de estrategias es un equilibrio de Nash si la elección de A es óptima dada la de B y la de B es óptima, dada la de A. El equilibrio de Nash se diferencia del equilibrio de las estrategias dominantes en que, en el equilibrio de las estrategias dominantes, se exige que la estrategia de A sea óptima en el caso de todas las elecciones óptimas de B, y viceversa. El equilibrio de Nash es menos restrictivo que el equilibrio de estrategias óptimas.

Un juego puede tener más de un equilibrio de Nash. Existen juegos en los no existe un equilibrio de Nash.

Juegos de suma constante

Juegos en los que para cada combinación de estrategias, la suma de los pagos (o utilidades) a cada jugador es la misma. Todas las situaciones de intercambio que no permiten la creación o destrucción de recursos son juegos de suma constante.

Árbol de juegos

El árbol de juegos es una representación de un juego que describe la estructura temporal de un juego en forma extensiva. EL primer movimiento del juego se identifica con un nodo distintivo que se llama la raíz del juego. Una jugada consiste en una cadena conectada de ramas que comienza en la raíz del árbol y termina, si el juego es finito, en el nodo terminal. Los nodos representan los posibles movimientos en el juego. Las ramas que parten de los nodos representan las elecciones o acciones disponibles en cada movimiento. A cada nodo distinto del nodo terminal se le asigna el nombre de un jugador de modo que se sabe quién hace la elección en cada movimiento. Cada nodo terminal informa sobre las consecuencias para cada jugador si el juego termina en ese nodo.

Juego repetido

En un juego repetido un grupo fijo de jugadores juega un juego dado repetidamente, observando el resultado de todas las jugadas pasadas antes que comience la siguiente jugada. La posibilidad de observar las acciones y los resultados pasados antes de que comience la siguiente jugada permite que los jugadores penen o premien las acciones pasadas, de modo que surgen estrategias que no surgirían en los juegos simples no repetidos. Por ejemplo, repitiendo el juego del dilema del prisionero un número suficiente de veces da como resultado un equilibrio en el cual ambos prisioneros nunca confiesan.

Ahora centrándonos en simulación, el enfoque que se le puede dar a la teoría de juegos, son los video juegos de estrategia, en los
que el jugador pone en practica sus habilidades de planeamiento y pensamiento para lograr la victoria, empleando estrategias.

Pueden ser de:

a) Construcción de imperios: Age of Empires.
b) De artilleria: Worms, Gunbound, Scorched Earth, Tanarus y Gorilla.
c) En tiempo real: Icehouse, Total Annihilation de Cavedog (1997), la saga Warcraft de Blizzard Entertainment (1994), Starcraft (1998), y la saga Age of Empires de Ensemble Studios (1997).
d) Por turnos: Civilization, y las sagas Heroes of Might and Magic y Master of Orion.
e) Táctica en tiempo real: Warhammer: Dark Omen, World in Conflict y la saga Close Combat.
f) Táctica por turnos: Jagged Alliance y la saga X-COM, Final Fantasy Tactics y los juegos de Nippon Ichi.

Aplicaciones de la Teoría de Juegos..


La teoría de juegos tiene la característica de ser un área en que la sustancia subyacente es principalmente una categoría de matemáticas aplicadas, pero la mayoría de la investigación fundamental es desempeñada por especialistas en otras áreas. En algunas universidades se enseña y se investiga casi exclusivamente fuera del departamento de matemática. Esta teoría tiene aplicaciones en numerosas áreas, entre las cuales caben destacar las siguientes:

* Economía y negocios: Los economistas han usado la teoría de juegos para analizar un amplio abanico de problemas económicos, incluyendo subastas, duopolios, oligopolios, la formación de redes sociales, y sistemas de votaciones.
Las recompensas de los juegos normalmente representan la utilidad de los jugadores individuales. A menudo las recompensas representan dinero, que se presume corresponden a la utilidad de un individuo. Un documento de teoría de juegos en economía empieza presentando un juego que es una abstracción de una situación económica particular. Se eligen una o más soluciones, y el autor demuestra qué conjunto de estrategias corresponden al equilibrio en el juego presentado.

* Biología: A diferencia del uso de la teoría de juegos en la economía, las recompensas de los juegos en biología se interpretan frecuentemente como adaptación.
En biología, la teoría de juegos se emplea para entender muchos problemas diferentes. Se usó por primera vez para explicar la evolución (y estabilidad) de las proporciones de sexos 1:1 (mismo número de machos que de hembras).

* Informática y lógica: La teoría de juegos ha empezado a desempeñar un papel importante en la lógica y la informática. Muchas teorías lógicas se asientan en la semántica de juegos. Además, los investigadores de informática han usado juegos para modelar programas que interactúan entre sí.

* Ciencia política: La investigación en ciencia política también ha usado resultados de la teoría de juegos. Una explicación de la teoría de la paz democrática es que el debate público y abierto en la democracia envía información clara y fiable acerca de las intenciones de los gobiernos hacia otros estados. Por otra parte, es difícil conocer los intereses de los líderes no democráticos, qué privilegios otorgarán y qué promesas mantendrán. Según este razonamiento, habrá desconfianza y poca cooperación si al menos uno de los participantes de una disputa no es una democracia.

***** * ***** * *****
* ***** * ***** * ***** * ***** *

En general la Teoría de Juegos la podemos aplicar en cualquier ámbito en nuestras vidas, por ejemplo, nosotros como estudiantes la utilizamos casi a diario, por que al elegir un método de estudio (ya sea leer, escribir, en grupo, entre otras), si no nos funciona, elegimos otra y otra hasta que nos funcione una, es decir aplicamos estrategias de estudio.

No hay comentarios:

Publicar un comentario